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Abstract

Function identification is a fundamental challenge in re-
verse engineering and binary program analysis. For in-
stance, binary rewriting and control flow integrity rely on
accurate function detection and identification in binaries.
Although many binary program analyses assume func-
tions can be identified a priori, identifying functions in
stripped binaries remains a challenge.

In this paper, we propose BYTEWEIGHT, a new au-
tomatic function identification algorithm. Our approach
automatically learns key features for recognizing func-
tions and can therefore easily be adapted to different
platforms, new compilers, and new optimizations. We
evaluated our tool against three well-known tools that
feature function identification: IDA, BAP, and Dyninst.
Our data set consists of 2,200 binaries created with three
different compilers, with four different optimization lev-
els, and across two different operating systems. In our
experiments with 2,200 binaries, we found that BYTE-
WEIGHT missed 44,621 functions in comparison with the
266,672 functions missed by the industry-leading tool
IDA. Furthermore, while IDA misidentified 459,247 func-
tions, BYTEWEIGHT misidentified only 43,992 functions.

1 Introduction
Binary analysis is an essential security capability with
extensive applications, including protecting binaries with
control flow integrity (CFI) [1], extracting binary code
sequences from malware [9], and hot patching vulnerabil-
ities [25]. Research interest in binary analysis shows no
sign of waning. In 2013 alone, several papers such as CFI
for COTS [34] (referred to as COTS-CFI in this paper),
the Rendezvous search engine for binaries [21], and the
Phoenix decompiler [28] focus on developing new binary
analysis techniques.

Function identification is a preliminary and necessary
step in many binary analysis techniques and applications.
For example, one property of CFI is to constrain inter-
function control flow to valid paths. In order to reason

about such paths, however, binary-only CFI infrastruc-
tures need to be able to identify functions accurately. In
particular, COTS-CFI [34], CCFIR [33], MoCFI [12],
Abadi et al. [1], and extensions like XFI [15] all depend
on accurate function identification to be effective.

CFI is not the only consumer of binary-level function
identification techniques. For example, Rendezvous [21]
is a search engine that operates at the granularity of func-
tion binaries; incorrect function identification can there-
fore result in incomplete or even incorrect search results.
Decompilers such as Phoenix [28], Boomerang [32], and
Hex-Rays [18] recover high-level source code from bi-
nary code. Naturally, decompilation occurs on only those
functions that have been identified in the input binary.

Given the foundational impact of accurate function
identification in so many security applications, is this
problem easy and can thus be regarded as “solved”? Inter-
estingly, recent security research papers seem to have con-
flicting opinions on this issue. On one side, Kruegel et al.
argued in 2004 that function start identification can be
solved “very well” [23, §4.1] in regular binaries and even
some obfuscated ones. On the other side, Perkins et al.
described static function start identification as “a complex
task in a stripped x86 executable” [25, §2.2.3] and there-
fore applied a dynamic approach in their ClearView sys-
tem. A similar opinion is also shared by Zhang et al., who
stated that “it is difficult to identify all function bound-
aries” [34, §3.2] and used a set of heuristics for this task.

So how good are the current tools at identifying func-
tions from stripped, non-malicious binaries? To find
out, we collected a dataset of 2,200 Linux and Win-
dows binaries generated by GNU gcc, Intel icc, and
Microsoft Visual Studio (VS) with multiple optimization
levels. We then use our dataset to evaluate the most
recent release of three popular off-the-shelf solutions
for function identification: (i) IDA (v6.5 at submission),
used in CodeSurfer/x86 [2], Choi et al.’s work on stati-
cally determining binary similarity [11], BinDiff [4], and
BinNavi [5]; (ii) the CMU Binary Analysis Platform



(BAP, v0.7), used in the Phoenix decompiler [28] and
the vulnerability analysis tool Mayhem [10]; and (iii) the
unstrip utility in Dyninst (dated 2012-11-30), used in
BinSlayer [7], Sharif et al.’s work on dynamic malware
analysis [29], and Sidiroglou et al.’s work on software
recovery navigation [30].

Our finding is that while IDA performs better than BAP
and Dyninst on our dataset, its result can still be quite
alarming—in our experiment, IDA returned 521,648 true
positives (41.81%), 266,672 false negatives (21.38%),
and 459,247 false positives (36.81%). While there is no
doubt that such failures can have a negative impact on
downstream security analyses, a real issue is in setting
the right expectation on the subject within the security
research community. If there is a publicly-available func-
tion identification solution where both its mechanism and
limitations are well-understood by researchers, then re-
searchers may be come up with creative strategies to cope
with the limitations in their own projects. The goal of
this paper is to explain our process of developing such a
solution and to establish its quality through evaluating it
against the aforementioned solutions.

We draw inspirations from how BAP and Dyninst per-
form function identification since their source code is
available. Both solutions rely on fixed, manually-curated
signatures. Dyninst, at the version we tested, uses the
byte signature 0x55 (push %ebp in assembly) to recog-
nize function starts in ELF x86 binaries [14]. BAP v0.7
uses a more complex signature, but it is also manually
generated. Unfortunately, the process of manually gen-
erating such signatures do not scale well. For example,
each new compiler release may introduce new idioms that
require new signatures to capture. The myriad of different
optimization settings, such as omit frame pointers, may
also demand even more signatures. Clearly, we cannot
expect to manually catch up.

One approach to recognizing functions is to automati-
cally learn key features and patterns. For example, semi-
nal work by Rosenblum et al. proposed binary function
start identification as a supervised machine learning clas-
sification problem [27]. They model function start identi-
fication as a Conditional Random Field (CRF) in which
binary offsets and a number of selected idioms (patterns)
appear in the CRF. Since standard inference methods for
CRF on large, highly-connected graphs are expensive,
Rosenblum et al. adopted feature selection and approxi-
mate inference to speed up their model. However, using
hardware available in 2008, they needed 150 compute-
days just for the feature selection phase on 1,171 binaries.

In this paper, we propose a new automated analysis
for inferring functions and implemented it in our BYTE-
WEIGHT system. A key aspect of BYTEWEIGHT is the
ability to learn signatures for new compilers and opti-
mizations at least one order of magnitude faster than as

reported by Rosenblum et al. [27], even after generously
accounting for CPU speed increase since 2008. In par-
ticular, we avoid using CRFs and feature selection, and
instead opt for a simpler model based on learning prefix
trees. Our simpler model is scalable using current comput-
ing hardware: we finish training 2,064 binaries in under
587 compute-hours. BYTEWEIGHT also does not require
compiler information of testing binaries, which makes the
tool more powerful in practice. In the interest of open
science, we also make our tools and datasets available to
seed future improvements.

At a high level, we learn signatures for function starts
using a weighted prefix tree, and recognize function starts
by matching binary fragments with the signatures. Each
node in the tree corresponds to either a byte or an instruc-
tion, with the path from the root node to any given node
representing a possible sequence of bytes or instructions.
The weights, which can be learned with a single linear
pass over the data set, express the confidence that a se-
quence of bytes or instructions corresponds to a function
start. After function start identification, we then use value
set analysis (VSA) [2] with an incremental control flow re-
covery algorithm to find function bodies with instructions,
and extract function boundaries.

To evaluate our techniques, we perform a large-scale
experiment and provide empirical numbers on how well
these tools work in practice. Based on 2,200 binaries
across operating systems, compilers and optimization op-
tions, our results show that BYTEWEIGHT has a precision
and recall of 97.30% and 97.44% respectively for function
start identification. BYTEWEIGHT also has a precision
and recall of 92.84% and 92.96% for function boundary
identification. Our tool is adaptive for varying compilers
and therefore more general than current pattern matching
methods.

Contributions. This paper makes the following contri-
butions:

• We enumerate the challenges we faced and imple-
ment a new function start identification algorithm
based on prefix trees. Our approach is automatic
and does not require a priori compiler information
(see §4). Our approach models the function start
identification problem in a novel way that makes it
amenable to much faster learning algorithms.

• We evaluate our method on a large test suite across
operating systems, compilers, and compiling opti-
mizations. Our model achieves better accuracy than
previously available tools.

• We make our test infrastructure, data set, implemen-
tation, and results public in an effort to promote open
science (see §5).



1 #include <stdio.h>
2 #include <string.h>
3 #define MAX 10
4 void sum(char *a, char *b)
5 {
6 printf("%s + %s = %d\n",
7 a, b, atoi(a) + atoi(b));
8 }
9 void sub(char *a, char *b)
10 {
11 printf("%s - %s = %d\n",
12 a, b, atoi(a) - atoi(b));
13 }
14 void assign(char *a, char *b)
15 {
16 char pre_b[MAX];
17 strcpy(pre_b, b);
18 strcpy(b, a);
19 printf("b is changed from %s to %s\n",
20 pre_b, b);
21 }
22 int main(int argc, char **argv)
23 {
24 void (*funcs[3])(char *x, char *y);
25 int f;
26 char a[MAX], b[MAX];
27 funcs[0] = sum;
28 funcs[1] = sub;
29 funcs[2] = assign;
30 scanf("%d %s %s", &f, a, b);
31 (*funcs[f])(a, b);
32 return 0;
33 }

1 00400660 <assign>:
2 mov %rbx,-0x10(%rsp)
3 mov %rbp,-0x8(%rsp)
4 sub $0x28,%rsp
5 mov %rdi,%rbp
6 lea 0xf(%rsp),%rdi
7 ...
8 004006b0 <sub>:
9 mov %rbx,-0x18(%rsp)
10 mov %rbp,-0x10(%rsp)
11 mov %rsi,%rbx
12 mov %r12,-0x8(%rsp)
13 xor %eax,%eax
14 sub $0x18,%rsp
15 ...
16 00400710 <sum>:
17 mov %rbx,-0x18(%rsp)
18 mov %rbp,-0x10(%rsp)
19 mov %rsi,%rbx
20 mov %r12,-0x8(%rsp)
21 xor %eax,%eax
22 sub $0x18,%rsp
23 ...

(a) Source code (b) Assembly compiled by gcc -O3

Figure 1: Example C Code. IDA fails to identify functions sum, sub, and assign in the compiled binary.

2 Running Example

We start with a simple example written in C, shown in
Figure 1. In this program, three functions are stored as
function pointers in the array funcs. When the program
is run, input from the user dictates which function gets
called, as well as the function arguments. We compiled
this example code on Linux Debian 7.2 x86-64 using gcc
with -O3, and stripped the binary using the command
strip. We then used IDA to disassemble the binary
and perform function identification. Many security tools
use IDA in this way as a first step before performing
additional analysis [9, 20, 24]. Unfortunately, for our
example program IDA failed to identify the functions
sum, sub, and assign.

IDA’s failure to identify these three critical functions
has significant implications for security analyses that rely
on accurate function boundary identification. Recall that
the CFI security policy dictates that runtime execution
must follow a path of the static control flow graph (CFG).
In this case, when the CFG is recovered by first iden-
tifying functions using IDA, any call to sum, sub, or
assign would be incorrectly disallowed, breaking legit-
imate program behavior. Indeed, any indirect jump to

an unidentified or mis-identified function will be blocked
by CFI. The greater the number of functions missed, the
more legitimate software functionality incorrectly lost.
Secondly, suppose we are checking code for potential
security-critical bugs. In our sample program, the func-
tion assign is vulnerable to a buffer overflow attack, but
is not identified by IDA as a function. For tools like
ClearView [25] that operate on binaries at the function
level, missing functions can mean missing vulnerabilities.

In our analysis of 1,171 binaries, we observed that
that IDA failed to identify 266,672 functions. BYTE-
WEIGHT improves on this number, missing only 44,621.
BYTEWEIGHT also makes fewer mistakes, incorrectly
identifying functions 43,992 times compared to 459,247
with IDA. While these results are not perfect, they demon-
strate that our automated machine learning approach can
outperform years of manual hand-tuning that has gone
into IDA.

3 Problem Definition and Challenges
The goal of function identification is to faithfully deter-
mine the set of functions that exist in binary code. Deter-
mining what functions exist and which bytes belong to
which functions is trivial if debug information is present.



For example, “unstripped” Linux binaries contain a sym-
bol table that maps function names to locations in a bi-
nary, and Microsoft program database (PDB) information
contains similar information for Windows binaries. We
start with notation to make our problem definition pre-
cise and then formally define three function identification
problems. We then describe several challenges to any
approach or algorithm that addresses the function identifi-
cation problems. In subsequent sections we provide our
approach.

3.1 Notation and Definitions

A binary program is divided into a number of sections.
Each section is given a type, such as code, data, read-only
data, and so on. In this paper we only consider executable
code, which we treat as a binary string.

Let B denote a binary string. For concreteness, think
of this as a binary string from the .text section in a
Linux executable. Let B[i] denote the ith byte of a binary
string, and B[i : i+ j] refer to the list of contiguous bytes
B[i],B[i+1], . . . ,B[i+ j−1]. Thus, B[i : i+ j] is j-bytes
long (with j ≥ 0).

Each byte in an executable is associated with an ad-
dress. The address of byte i is calculated with respect to
a fixed section offset, i.e., if the section offset is ω , the
address of byte i is i+ω . For convenience, we omit the
offset, and refer to i as the ith address. Since the real ad-
dress can always be calculated by adding the fixed offset,
this can be done without loss of generality.

A function Fi in a binary B is a list of addresses cor-
responding to statements in either a function from the
original compiled language or a function introduced di-
rectly by the compiler, denoted as

F = {B[i],B[ j], . . . ,B[k]}

Note that function bytes need not be a set of contiguous
addresses. We elaborate in §3.3 on real optimizations that
result in high-level functions being compiled to a set of
non-contiguous intervals of instructions.

Towards our goal of determining which bytes of a bi-
nary belong to which functions, we define the set of func-
tions in a binary

FUNCS(B) = {F1,F2, . . . ,Fk}.

Note that functions may share bytes, i.e., it may be that
F1∩F2 6= /0. We give examples in §3.3 where this is the
case.

We call the lowest address of a function Fi the func-
tion start address si, i.e., si = min(Fi). The function end
address ei is the maximum byte in a function body, i.e.,
ei = max(Fi). We define the function boundary (si,ei) as
the function start and end addresses for Fi.

In order to evaluate function identification algorithms,
we define ground truth in terms of oracles, which may
have a number of implementations:
Function Oracle. Ofunc is an oracle that, given a binary

B, returns a list of functions FUNCS(B) where each
Fi is a set of bytes representing higher-level function
i, as defined above.

Boundary Oracle. Obound is an oracle that, given
B, returns the set of function boundaries
{(s1,e1),(s2,e2), . . . ,(sk,ek)}.

Start Oracle. Ostart is an oracle that, given B, returns the
set of function start addresses {s1,s2, . . . ,sk}.

These oracles are successively less powerful. For ex-
ample, implementing a boundary oracle Obound from a
function oracle Ofunc requires simply taking the minimum
and maximum element of each Fi. Similarly, a start oracle
Ostart can be implemented from either Ofunc or Obound by
finding the minimum element of each Fi.

We do not restrict ourselves to a specific oracle imple-
mentation, as realizable oracles may vary across operating
system and compiler. For example, the boundary oracle
can be implemented by retaining debug information for
Windows or Linux binaries. The function oracle can be
implemented by instrumenting a compiler to output a
list of instruction addresses included in each compiled
function.

3.2 Problem Definition

With the above definitions, we are now ready to state
our problem definitions. We start with the least powerful
identification (function start) and build up to the most
difficult one (entire function).

Definition 3.1. The Function Start Identification (FSI)
problem is to output the complete list of function starts
{s1,s2, . . . ,sk} given a binary B compiled from a source
with k functions.

Suppose there is an algorithm AFSI(B) for the FSI prob-
lem which outputs S = {s1,s2, . . . ,sk}. Then:

• The set of true positives, TP, is S∩Ostart(B).
• The set of false positives, FP, is S−Ostart(B).
• The set of false negatives, FN, is Ostart(B)−S.
We also define precision and recall. Roughly speak-

ing, precision reflects the number of times an identified
function start is really a function start. A high precision
means that most identified functions are indeed functions,
whereas a low precision means that some sequences are
incorrectly identified as functions. Recall is the mea-
surement describing how many functions were identified
within a binary. A high recall means an algorithm detected
most functions, whereas a low recall means most func-
tions were missed. Mathematically, they can be expressed
as

Precision =
|TP|

|TP|+ |FP|



and

Recall =
|TP|

|TP|+ |FN|
.

A more difficult problem is to identify both the start
and end addresses for a function:

Definition 3.2. The Function Boundary Identification
(FBI) problem is to identify the start and end bytes
(si,ei) for each function i in a binary, i.e., S =
{(s1,e1),(s2,e2), . . . ,(sk,ek)}, given a binary B compiled
from a source with k identified functions.

Suppose there is an algorithm AFBI(B) for the FBI prob-
lem which outputs S= {(s1,e1),(s2,e2), . . . ,(sk,ek)}. We
then define true positives, false positives, and false nega-
tives similarly to above with the additional requirement
that both the start and end addresses must match the out-
put of the boundary oracle, i.e., for oracle output (sgt ,egt)
and algorithm output (sA ,eA ), a positive match requires
sgt = sA and egt = eA . A false negative occurs if either
the start or end address is wrong. Precision and recall are
defined analogously to the FSI problem.

Finally, we define the general function identification
problem:

Definition 3.3. The Function Identification (FI) problem
is to output a set {F1,F2, . . . ,Fk} where each Fi is a list
of bytes corresponding to high-level function i given a
binary B with k identified functions.

We define true positives, false positives, false negatives,
precision, and recall for the FI problem in the same ways
as FSI and FBI but add the requirement that all bytes of a
function must be matched between agorithm and oracle.

The above problem definitions form a natural hierarchy,
where function start identification is the easiest and full
function identification is the most difficult. For exam-
ple, an algorithm AFBI for function boundaries can solve
the function start problem by returning the start element
of each tuple. Similarly, an algorithm for the function
identification problem needs only return the maximum
and minimum element to solve the function boundary
identification problem.

3.3 Challenges

Identifying functions in binary code is made difficult by
optimizing compilers, which can manipulate functions
in unexpected ways. In this section we highlight several
challenges posed by the behavior of optimizing compilers.

Not every byte belongs to a function. Compilers may
introduce extra instructions for alignment and padding
between or within a function. This means that not ev-
ery instruction or byte must belong to a function. For
example, suppose we have symbol table information for a
binary B. One naive algorithm is to first sort symbol-table

1 <_func1>:
2 100000e20: push %rbp
3 100000e21: mov %rsp,%rbp
4 100000e24: lea 0x69(%rip),%rdi
5 100000e2b: pop %rbp
6 100000e2c: jmpq 100000e5e <_puts$stub>
7 100000e31: nopl 0x0(%rax)
8 100000e38: nopl 0x0(%rax,%rax,1)
9 <func2>:

Figure 2: Unreachable function example: source code
and assembly.

entries by address, and then ascribe each byte between en-
try fi and fi+1 as belonging to function fi. This algorithm
has appeared in several binary analysis platforms used in
security research, such as versions of BAP [3] and Bit-
Blaze [6]. This heuristic is flawed, however. For example,
in Figure 2 lines 7–8 are not owned by any function.

Functions may be non-contiguous. Functions may
have gaps. The gaps can be jump tables, data, or
even instructions for completely different functions [26].
As noted by Harris and Miller [19], function sharing
code can also lead to non-contiguous functions. Fig-
ure 3 shows code that starts out with the function
ConvertDefaultLocale. Midway through the function
at lines 17–21, however, the compiler decided to include
a few lines of code for FindNextFileW as an optimiza-
tion. Many binary analysis platforms, such as BAP [3]
and BitBlaze [6], are not able to handle non-contiguous
functions.

Functions may not be reachable. A function may be
dead code and never called, but nonetheless appear in
the binary. Recognizing such functions is still important
in many security scenarios. For example, suppose two
malware samples both contain a unique, identifying, yet
uncalled function. Then the two malware samples are
likely related even though the function is never called.
One consequence of this is that techniques based solely
on recursive disassembling from program start are not
well-suited to solve the function identification problem. A
recursive disassembler only disassembles bytes that occur
along some control flow path, and thus by definition will
miss functions that are not called.

Unreachability may occur for several reasons, includ-
ing compiler optimizations. For example, Figure 4 shows
a function for computing factorials called fac. When
compiled by gcc -O3, the result of the call to fac is pre-
computed and inlined. Although the code of fac appears,
it is never called in the binary code.

Security policies such as CFI and XFI must be aware
of all low-level functions, not just those in the original
code.



1 <ConvertDefaultLocale>
2 7c8383ff: mov %edi,%edi
3 7c838401: push %ebp
4 ...
5 7c83840c: jz 7c848556
6 7c838412: test %eax, %eax
7 7c838414: jz 7c83965c
8 7c83841a: mov $1024,%ecx
9 7c83841f: cmp %ecx,%eax
10 7c838421: jz 7c83965c
11 7c838427: test $252,%ah
12 7c83842a: jnz 7c838442
13 7c83842c: mov %eax,%edx
14 ...
15 7c838442: pop %ebp
16 7c838443: ret 4
17 ; chunk of different function FindNextFileW
18 7c838446: push 6
19 7c838448: call sub_7c80935e
20 7c83844d:
21 ; end of chunk
22 ...
23 7c83965c: call GetUserDefaultLCID
24 7c890661: jmp 7c838442
25 ...
26 7c848556: mov $8,%eax
27 7c84855b: jmp 7c838442

Figure 3: Lines 17–21 show code from FindNextFileW
included in the middle of ConvertDefaultLocale.

Functions may have multiple entries. High-level lan-
guages use functions as an abstraction with a single entry.
When compiled, however, functions may have multiple
entries as a result of specialization. For example, the icc
compiler with -O1 specialized the chown_failure_ok
function in GNU LIBC. As shown in Figure 5, a new
function entry chown_failure_ok. (note the period) is
added for use when invoking chown_failure_ok with
NULL. The compiled binary has both symbol table entries.
Unlike shared code for two functions that were originally
separate, the compiler here has introduced shared code
via multiple entries as an optimization.

Identifying both functions is necessary in many security
scenarios, e.g., CFI needs to identify each function entry
point for safety, and realize that both are possible targets.
More generally, any binary rewriting for protection (e.g.,
memory safety, control safety, etc.) would need to reason
about both entry points.

Functions may be removed. Functions can be re-
moved by function inlining, especially small functions.
Compilers perform function-inlining to reduce function
call overhead and expose more optimization opportuni-
ties. For example, the function utimens_symlink is in-
lined into the function copy_internal when compiled
by gcc with -O2. The source code and assembly code
are shown in Figure 6. Note that function inlining does
not have to be explicitly declared with inline annota-
tion in source code. Many compilers inline functions
by default unless explicitly disabled with options such

as -fno-deault-inline [17]. This indicates that for
those binary analysis techniques which need function in-
formation, even though source code is accessible, a robust
function identification technique should still operate on
the program binary. If using source code, function iden-
tification may be less precise due to functions that are
inlined during compilation.

Each compilation is different. Binary code is not only
heavily influenced by the compiler but also the compiler
version and specific optimizations employed. For exam-
ple, icc does not pre-compute the result of fac in Fig-
ure 4, but gcc does. Even different versions of a compiler
may change code. For example, traditionally gcc (e.g.,
version 3) would only omit the use of the frame pointer
register %ebp when given the -fomit-frame-pointer
option. Recent versions of gcc (such as version 4.2),
however, opportunistically omit the frame pointer when
compiled with -O1 and -O2. As a result several tools that
identified functions by scanning for push %ebp break.
For example, Dyninst, used for instrumentation in sev-
eral security projects, relies on this heuristic to identify
functions and breaks on recent versions of gcc.

4 BYTEWEIGHT

In this section, we detail the design and algorithms used
by BYTEWEIGHT to solve the function identification
problems. We first start with the FSI problem, and then
move to the more general function identification problem.

We cast FSI as a machine learning classification prob-
lem where the goal is to label each byte of a binary as
either a function start or not. We use machine learning
to automatically generate literal patterns so that BYTE-
WEIGHT can handle new compilers and new optimiza-
tions without relying on manually generated patterns or
heuristics. Our algorithm works with both byte sequences
and disassembled instruction sequences.

Our overall system is shown in Figure 7. Like any clas-
sification problem, we have a training phase followed by
a classification phase. During training, we first compile a
reference corpus of source code to produce binaries where
the start addresses are known. At a high level, our algo-
rithm creates a weighted prefix tree of known function
start byte or instruction sequences. We weight vertices
in the prefix tree by computing the ratio of true positives
to the sum of true and false positives for each sequence
in the reference data set. We have designed and imple-
mented two variations of BYTEWEIGHT: one working
with raw bytes and one with normalized disassembled
instructions. Both use the same overall algorithm and
data structures. We show in our evaluation that the nor-
malization approach provides higher precision and recall,
and costs less time (experiment 5.2).

In the classification phase, we use the weighted prefix
tree to determine whether a given sequence of bytes or



1 int fac(int x)
2 {
3 if (x == 1) return 1;
4 else return x * fac(x - 1);
5 }
6
7 void main(int argc, char **argv)
8 {
9 printf("%d", fac(10));
10 }

1 080483f0 <fac>:
2 ...
3 08048410 <main>:
4 ...
5 movl $0x375f00,0x4(%esp)
6 movl $0x8048510,(%esp)
7 call 8048300 ;call printf without fac
8 xor %eax,%eax
9 add $0x8,%esp
10 pop %ebp
11 ret

(a) Source code (b) Assembly compiled by gcc -O2

Figure 4: Unreachable code: source code and assembly.

1 extern bool
2 chown_failure_ok (struct cp_options const *x)
3 {
4 return ((errno == EPERM || errno == EINVAL)
5 && !x->chown_privileges);
6 }

1 <chown_failure_ok>:
2 804f544: mov 0x4(%esp),%eax
3 <chown_failure_ok.>:
4 804f548: push %esi
5 804f549: push %esi
6 804f54a: push %esi
7 ...

(a) Source Code (b) Assembly compiled by icc -O1

Figure 5: chown_failure_ok is specialized: source code and assembly.

instructions corresponds to a function start. We say that a
sequence corresponds to a function start if the correspond-
ing terminal node in the prefix tree has a weight value
larger than the threshold t. In the case where the sequence
exactly matches a path in the prefix tree, the terminal node
is the final node in this path. If the sequence does not
exactly match a path in the tree, the terminal node is the
last matched node in the sequence.

Once we identify function starts, we infer the remaining
bytes (and instructions) that belong to a function using
a CFG recovery algorithm. The algorithm incrementally
determines the CFG using a variant of VSA [2]. If an
indirect jump depends on the value of a register, then we
over-approximate a solution to the function identification
problem by adding edges that correspond to locations
approximated using VSA.

4.1 Learning Phase

The input to the learning phase is a corpus of training
binaries T, and a maximum sequence length ` > 0. `
serves as a bound on the maximum tree height.

In BYTEWEIGHT, we first generate the oracle Obound
by compiling known source using a variety of optimiza-
tion levels while retaining debug information. The debug
information gives us the required (si,ei) pair for each
function i in the binary.

In this paper, we consider two possibilities: learning
over raw bytes and learning over normalized instructions.
We refer to both raw bytes and instructions as a sequence
of elements. The sequence length ` determines how many

raw sequential bytes or instructions we consider for train-
ing.

Step 1: Extract first ` elements for each function (Ex-
traction). In the first step, we iterate over all (si,ei)
pairs and extract the first ` elements. If there are fewer
than ` elements in the function, we extract the maximum
number of elements. For raw bytes, this is B[s : s+ `]
bytes, and for instructions, it is the first ` instructions
disassembled linearly starting from B[s].

Step 2: Generate a prefix tree (Tree Generation). In
step 2, we generate a prefix tree from the extracted se-
quences to represent all possible function start sequences
up to ` elements.

A prefix tree, also called a trie, is a data structure en-
abling efficient information retrieval. In the tree, each
non-root node has an associated byte or instruction. The
sequence for a node n is represented by the elements that
appear on the path from the root to n. Note that the tree
represents all strings up to ` elements, not just exactly `
elements.

Figure 8a shows an example tree on instructions,
where node callq 0x43a28 represents the instruction
sequence:

push %ebp ;saved stack pointer
mov %esp,%ebp ;establish new frame
callq 0x43a28 ;call another function

If the sequence is over bytes, the prefix tree is calcu-
lated directly, although our experiments indicate that a
prefix tree calculated over normalized instructions fairs



1 static inline int
2 utimens_symlink (char const *file,
3 struct timespec const *timespec)
4 {
5 int err = lutimens (file, timespec);
6 if (err && errno == ENOSYS)
7 err = 0;
8 return err;
9 }
10
11 static bool
12 copy_internal (char const *src_name,
13 char const *dst_name,
14 ...)
15 {
16 ...
17 if ((dest_is_symlink
18 ?utimens_symlink (dst_name,
19 timespec)
20 :utimens (dst_name, timespec))
21 != 0)
22 ...
23 }

1 <_copy_internal>:
2 100003170: push %rbp
3 100003171: mov %rsp,%rbp
4 100003174: push %r15
5 100003176: push %r14
6 ...
7 10000468c: test %r14b,%r14b
8 10000468f: je 100005bfd
9 100004695: lea -0x738(%rbp),%rsi
10 10000469c: mov -0x750(%rbp),%rdi
11 1000046a3: callq 10000d020 <_lutimens>
12 1000046a8: test %eax,%eax
13 1000046aa: mov %eax,%ebx
14 ...

(a) Source Code (b) Assembly compiled by gcc -O2

Figure 6: Example of function being removed due to function inlining optimization.
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Figure 7: The BYTEWEIGHT function boundary inference approach.

better. We perform two types of normalization: imme-
diate number normalization and call & jump instruction
normalization. As shown in Table 1, normalization takes
an instruction as input and generalizes it so that it can
match against very similar, but not identical instructions.
These two types of normalization help us improve recall
at the cost of a little precision (Table 2). In our running
example, only the function assign is recognized as a
function start when matched against the unnormalized
prefix tree (Figure 8a), while functions assign, sub, and
sum can all be recognized when matched against the nor-
malized prefix tree (Figure 8b).

Step 3: Calculate tree weights (Weight Calculation).
The prefix tree represents possible function start se-
quences up to ` elements. For each node, we assign a
weight that represents the likelihood that the sequence

corresponding to the path from the root node to this node
is a function start in the training set. For example, ac-
cording to Figure 8, the weight of node push %ebp is
0.1445, which means that during training, 14.45% of all
sequences with prefix of push %ebp were truly function
starts, while 85.55% were not.

To calculate the weight, we first count the number of
occurrences T+ in which each prefix in the tree matches
a true function start with respect to the ground truth Ostart
for the entire training set T.

Second, we lower the weight of a prefix if it occurs
in a binary, but is not a function start. We do this by
performing an exhaustive disassembly starting from every
address that is not a function start [23]. We match each
exhaustive disassembly sequence of ` elements against
the tree. We call these false matches. The number of false
matches T− is the number of times a prefix represented



mov %rbx,-0x10(%rsp) 	


push %ebp	
 mov %esp,%ebp	


mov %rbp,-0x8(%rsp) 	


sub $0x20,%rsp 	


mov %rsi,%rbx 	


callq 0x43a28 	


callq 0x401320 	

Ø 	


…	


…	


0.1445	
 0.9883	
 0.0159	


0.0320	


0.9728	


0.9419	
0.9694	
0.8459	


0.0000	


(a) Unnormalized

mov %rbx,-0x[1-9a-
f][0-9a-f]*\(%rsp\) 	


push %ebp	
 mov %esp,%ebp	


mov %rbp,-0x[1-9a-
f][0-9a-f]*\(%rsp\) 	


sub (?<! -)0x[1-9a-
f][0-9a-f]*,%rsp 	


mov %rsi,%rbx 	


call[q]* +0x[0-9a-
f]*	


Ø 	


…	


…	


0.1445	
 0.9883	
 0.0219	


0.8459	
 0.9694	


0.9728	


0.9419	


0.0000	


(b) Normalized

Figure 8: Example of unnormalized (a) and normalized (b) prefix tree. Weight is shown above its corresponding node.

in the tree is not a function start in the training set T. The
weight for each node n is then the ratio of true positives
to overall matches

Wn =
T+

T++T−
. (1)

Since the prefix tree can end up being quite large, it
is beneficial to prune the tree of unnecessary nodes. For
each node in the tree, we remove all its child nodes if
the value of T− for this node is 0. For any child node,
the value of T− is never negative and never larger than
the value of T− for the parent node. Hence, if T− is 0
for a parent node, then the value must be 0 for all of the
child nodes as well. The intuition here is that if a child
node matches a sequence that is not a function start, then
so must the parent node. Thus, if the parent node does
not have any false matches, then neither can a child node.
Based on Equation 1, if T− = 0 and T+ > 0, then the
weight of the node is 1. Since the child nodes of such a
node also have a T− value of 0 and are not included in
the tree if T+ = 0, they must also have a weight of 1. As
discussed more in Section 4.2, child nodes with identical
weights are redundant and can safely be removed without
affecting classification.

This pruning optimization helps us greatly reduce the
space needed by the tree. For example, pruning reduced

the number of nodes in the prefix tree from 2,483 to
1,447 for our Windows x86 dataset. Moreover, pruning
increases the speed of matching, since we can determine
the weight of test sequences after traversing fewer nodes
in the tree.

4.2 Classification Phase Using a Weighted Prefix
Tree

The output of the learning phase is a weighted prefix tree
(e.g., Figure 8). The input to the classification step is a
binary B, the weighted prefix tree, and a weight threshold
t.

To classify instructions, we perform exhaustive disas-
sembly of the input binary B and match against the tree.
Matching is done by tokenizing the disassembled stream,
performing normalization as done during learning, and
walking the tree. To classify bytes rather than instructions,
we again start at every offset but instead match the raw
bytes instead of normalized instructions.

The weight of a sequence is determined by last match-
ing node (the terminal node) during the walk. For exam-
ple, given the tree in Figure 8a, and our running example
with sequences

mov %rbx,-0x10(%rsp)
mov %rbp,-0x8(%rsp)
sub %0x28,%rsp



Type Unnormalized Signature Normalized Signature

Immediate

all
mov $0xaa,%eax mov \$-*0x[0-9a-f]+,%eax

mov %gs:0x0,%eax mov %gs:-*0x[0-9a-f]+,%eax

mov 0x80502c0,%eax mov -*0x[0-9a-f]+,%eax

zero
mov $0xaa,%eax mov \$-*0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:0x0+,%eax

mov 0x80502c0,%eax mov -*0x[1-9a-f][0-9a-f]*,%eax

positive
mov $0xaa,%eax mov \$(?<! -)0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:-0x[0-9a-f]+|0x0+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[1-9a-f][0-9a-f]*,%eax

negative

mov $0xaa,%eax mov \$(?<! -)0x[0-9a-f]+,%eax

mov %gs:0x0,%eax mov %gs:(?<! -)0x[0-9a-f]+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[0-9a-f]+,%eax

movzwl -0x6c(%ebp),%eax movzl -0x[1-9a-f][0-9a-f]*\(%ebp\),%eax

npz
mov $0xaa,%eax mov \$(?<! -)0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:0x0+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[1-9a-f][0-9a-f]*,%eax

movzwl -0x6c(%ebp),%eax movzl -0x[1-9a-f][0-9a-f]*\(%ebp\),%eax

Call & Jump call 0x804cf32 call[q]* +0x[0-9a-f]*

For immediate normalization, we generalize immediate operands. There are five kinds of generalization: all, zero,
positive, negative, and npz. For jump and call instruction normalization, we generalize callee and jump addresses.

Table 1: Normalizations in signature.

the matching node will be mov%rbp,-0x8(%rsp), giving
a weight of 0.9694. However, for another sequence

push %ebp
and $0x2,%esp

we would have weight 0.1445. We say the sequence is the
beginning of a function if the output weight w is not less
than the threshold t.

4.3 The Function Identification Problem

At a high level, we address the function identification
problem by first determining the start addresses for func-
tions, and then performing static analysis to recover the
CFG of instructions that are reachable from the start. Di-
rect control transfers (e.g., direct jumps and calls) are
followed using recursive disassembly. Indirect control
transfers, e.g., from indirect calls or jump tables, are enu-
merated using VSA [2]. The final CFG then represents
all instructions (and corresponding bytes) that are owned
by the function starting at the given address.

CFG recovery starts at a given address and recursively
finds new nodes that are connected to found nodes. The
process ends when no more vertices are added into graph.
Starting at the addresses classified for FSI, CFG recovery
recursively adds instructions that are reachable from these
starts. A first-in-first-out vertex array is maintained during
CFG recovery.

At the beginning, there is only one element – the start
address in the array. In each round, we process the first

element by exploring new reachable instructions. If the
new instruction is not in the array, it will be appended
to the end. Elements in the array are handled accord-
ingly until all elements have been processed and no more
instructions are added.

If the instruction being processed is a branch
mnemonic, the reachable instruction is the branch ref-
erence. If it is a call mnemonic, the reachable instructions
include both the call reference and the instruction directly
following the call instruction. If it is an exit instruction,
there will be no new instruction. For the rest of mnemon-
ics, the new instruction is the next one by address. We
handle indirect control transfer instruction by VSA: we
infer a set that over-approximates the destination of the
indirect jump and thus over-approximate the function
identification problem.

Note that functions can exit by calling a no-return func-
tion such as exit. This means that some call instructions
in fact never return. To detect these instances, we check
the call reference to see if it represents a known no-return
function such as abort or exit.

4.4 Recursive Function Call Resolution

Pattern matching can miss functions; for example, a func-
tion that is written directly in assembly may not obey
calling conventions. To catch these kinds of missed func-
tions, we continue to supplement the function start list
during CFG recovery. If a call instruction has its callee in



the .text section, we consider the callee to be a function
start. We then do CFG recovery again, starting at the
new function start until there are no more functions added
into the function start list. We will refer to this strategy
as recursive function call resolution (RFCR). In §5.3, we
discuss the effectiveness of this technique in function start
identification.

4.5 Addressing Challenges

In this section, we describe how BYTEWEIGHT addresses
the challenges raised in §3.3.

First, BYTEWEIGHT recovers functions that are un-
reachable via calls because it does not depend on calls to
identify functions. In particular, BYTEWEIGHT recovers
any function start that matches the learned weighted pre-
fix tree as described above. Similarly, our approach will
also learn functions that have multiple entries, provided
a similar specialization occurs in the training set. This
seems realistic in many scenarios since the number of
compiler optimizations that create multiple entry func-
tions are relatively few and can be enumerated during
training.

BYTEWEIGHT also deals with overlapping byte or in-
struction sequences provided that there is a unique start
address. Consider two functions that start at different
addresses, but contain the same bytes. During CFG recov-
ery, BYTEWEIGHT will discover that both functions use
the same bytes, and attribute the bytes to both functions.
BYTEWEIGHT can successfully avoid false identification
for inlined functions when inlined function does not be-
have like an empirical function start (does not weighted
over threshold in training).

Finally, note that BYTEWEIGHT does not need to at-
tribute every byte or instruction to a function. In particular,
only bytes (or instructions) that are reachable from the
recovered function entries will be owned by a function in
the final output.

5 Evaluation
In this section, we discuss our experiments and perfor-
mance. BYTEWEIGHT is a cross-platform tool which can
be run on both Linux and Windows. We used BAP [3] to
construct CFGs. The rest of the implementation consists
of 1988 lines of OCaml code and 222 lines of shell code.
We set up BYTEWEIGHT on one desktop machine with a
quad-core 3.5GHz i7-3770K CPU and 16GB RAM. Our
experiments aimed to address three questions:

1. Does BYTEWEIGHT’s pattern matching model per-
form better than known models for function start
identification? (§5.2)

2. Does BYTEWEIGHT perform function start identi-
fication better than existing binary analysis tools?
(§5.3)

3. Does BYTEWEIGHT perform function boundary
identification better than existing binary analysis
tools? (§5.4)

In this section, we first describe our data set and ground
truth (the oracle), then describe the results of our exper-
iments. We performed three experiments answering the
above three questions. In each experiment, we compared
BYTEWEIGHT against existing tools in terms of both
accuracy and speed.

Because BYTEWEIGHT needs training, we divided the
data into training and testing sets. We used standard 10-
fold validation, dividing the element set into 10 sub-sets,
applying 1 of the 10 on testing, and using the remaining
9 for training. The overall precision and recall represent
the average of each test.

5.1 Data Set and Ground Truth

Our data set consisted of 2,200 different binaries compiled
with four variables:
Operating System. Our evaluation used both Linux and

Windows binaries.
Instruction Set Architecture (ISA). Our binaries con-

sisted of both x86 and x86-64 binaries. One reason
for varying the ISA is that the calling convention is
different, e.g., parameters are passed by default on
the stack in Linux on x86, but in registers on x86-64.

Compiler. We used GNU gcc, Intel icc, and Microsoft
VS.

Optimization Level. We experimented with the four op-
timization levels from no optimization to full opti-
mization.

On Linux, our data set consisted of 2,064 binaries in
total. The data set contained programs from coreutils,
binutils, and findutils compiled with both gcc
4.7.2 and icc 14.0.1. On Windows, we used VS 2010, VS
2012, and VS 2013 (depending on the requirements of the
program) to compile 68 binaries for x86 and x86-64 each.
These binaries came from popular open-source projects:
putty, 7zip, vim, libsodium, libetpan, HID API, and pbc (a
library for protocol buffers). Note that because Microsoft
Symbol Server releases only public symbols which do
not contain information of private functions, we were un-
able to use Microsoft Symbol Server for ground truth and
include Windows system applications in our experiment.

We obtained ground truth for function boundaries from
the symbol table and PDB file for Linux and Windows
binaries, respectively. We used objdump to parse symbol
tables, and Dia2dump [13] to parse PDB files. Addi-
tionally, we extracted “thunk” addresses from PDB files.
While most tools do not take thunks into account, IDA
considers thunks in Windows binaries to be special func-
tions. To get a fair result, we filtered out thunks from
IDA’s output using the list of thunks extracted from PDB
files.



5.2 Signature Matching Model

Our first experiment evaluated the signature matching
model for function start identification. We compared
BYTEWEIGHT and Rosenblum et al.’s implementation in
terms of both accuracy and speed. In order to equally eval-
uate the signature matching models, recursive function
call resolution was not used in this experiment.

The implementation of Rosenblum et al. is available
as a matching tool with 12 hard-coded signatures for gcc
and 41 hard-coded signatures for icc. Their learning
code was not available, nor was their dataset. Although
they evaluated VS in their paper, the version of the im-
plementation that we had did not support VS and was
limited to x86. Each signature has a weight, which is also
hard-coded. After calculating the probability for each
sequence match, it uses a threshold of 0.5 to filter out
function starts. Taking a binary and a compiler name
(gcc or icc), it generates a list of function start addresses.
To adapt to their requirements, we divide Linux x86 bi-
naries into two groups by compiler, where each group
consists of 516 binaries. We did 10-fold cross valida-
tion for BYTEWEIGHT, and use the same threshold as
Rosenblum et al.’s implementation.

We also evaluated another two varieties of our model:
one without normalization, and one with a maximum
tree height of 3, which is same as the model used by
Rosenblum et al. and BYTEWEIGHT (3), respectively.

Table 2 shows precision, recall, and runtime for each
compiler and each function start identification model.
From the table we can see that Rosenblum et al.’s imple-
mentation had an accuracy below 70%, while both BYTE-
WEIGHT-series models achieved an accuracy of more
than 85%. Note that BYTEWEIGHT with 10-length and
normalized signatures (the last row in table) performed
particularly well, with an accuracy of approximately 97%,
a more than 35% improvement over Rosenblum et al.’s
implementation.

Table 2 also details the accuracy and performance dif-
ferences among BYTEWEIGHT with different configura-
tions. Comparing against the full configuration model
(BYTEWEIGHT), the model with a smaller maximum sig-
nature length (BYTEWEIGHT (3)) performs slightly faster
(3% improvement), but sacrifices 7% in accuracy. The
model without signature normalization (BYTEWEIGHT
(no-norm)) has only 1% higher precision but 6.68% lower
recall, and the testing time is ten times longer than that of
the normalized model.

5.3 Function Start Identification

The second experiment evaluated our full function start
identification against existing static analysis tools. We
compared BYTEWEIGHT (no-RFCR)—a version without
recursive function call resolution, BYTEWEIGHT, and the
following tools:

IDA. We used IDA 6.5, build 140116 along with the
default FLIRT signatures. All function identification
options were enabled.

BAP. We used BAP 0.7, which provides a
get_function utility that can be invoked
directly.

Dyninst. Dyninst offers the tool unstrip [31] to identify
functions in binaries without debug information.

Naive Method. This matched simple 0x55 (push %ebp
or push %rbp) and 0xc3 (ret or retq) signatures
only.

We divided our data set into four categories: ELF x86,
ELF x86-64, PE x86, and PE x86-64. Unlike the previous
experiment, binaries from various compilers but the same
target were grouped together. Overall, we had 1032 ELF
x86 and ELF x86-64 binaries, and 68 PE x86 and PE x86-
64 binaries. We evaluated these categories separately, and
again applied 10-fold validation. During testing, we used
the same score threshold t = 0.5 as in the first experiment.

Note that not every tool in our experiment supports all
binary targets. For example, Dyninst does not support
ELF x86-64, PE x86, or PE x86-64 binaries. We use “-”
to indicate when the target is not supported by the tool.
Also, we omitted 3 failures in BYTEWEIGHT, and 10
failures in Dyninst during this experiment. Due to a bug
in BAP, BYTEWEIGHT failed in 3 icc compiled ELF
x86-64 binaries: ranlib with -O3, ld_new with -O2, and
ld_new with -O3. Dyninst failed in 8 icc compiled ELF
x86-64 binaries and 2 gcc compiled ELF x86-64 binaries.
The results of our experiment are shown in Table 3.

As evident in Table 3, BYTEWEIGHT achieved a higher
precision and recall than BYTEWEIGHT without recursive
function call resolution. BYTEWEIGHT performed above
96% in Linux, while all other tools all performed below
90%. In Windows, we have comparable performance to
IDA in terms of precision, but improved results in terms
of recall.

Interestingly, we found that the naive method was not
able to identify any functions in PE x86-64. This is mainly
because VS does not use push %rbp to begin a function;
instead, it uses move instructions.

5.4 Function Boundary Identification

The third experiment evaluated our function boundary
identification against existing static analysis tools. As in
the last experiment, we compared BYTEWEIGHT, BYTE-
WEIGHT (no-RFCR), IDA, BAP, and Dyninst, classified
binaries by their target, and applied 10-fold validation
on each of the classes. The results of our experiment are
shown in Table 4.

Our tool performed the best in Linux, and was compa-
rable to IDA in Windows. In particular, for Linux binaries,
BYTEWEIGHT and BYTEWEIGHT (no-RFCR) have both
precision and recall above 90%, while IDA is below 73%.



GCC ICC

Precision Recall Time(sec) Precision Recall Time(sec)

Rosenblum et al. 0.4909 0.4312 1172.41 0.6080 0.6749 2178.14

BYTEWEIGHT (3) 0.9103 0.8711 1417.51 0.8948 0.8592 1905.34

BYTEWEIGHT (no-norm) 0.9877 0.9302 19994.18 0.9727 0.9132 20894.45

BYTEWEIGHT 0.9726 0.9599 1468.75 0.9725 0.9800 1927.90

Table 2: Precision/Recall of different pattern matching models for function start identification.

ELF x86 ELF x86-64 PE x86 PE x86-64

Naive 0.4217/0.3089 0.2606/0.2506 0.6413/0.4999 0.0000/0.0000

Dyninst 0.8877/0.5159 − − −

BAP 0.8910/0.8003 − 0.3912/0.0795 −

IDA 0.7097/0.5834 0.7420/0.5550 0.9467/0.8780 0.9822/0.9334

BYTEWEIGHT (no-RFCR) 0.9836/0.9617 0.9911/0.9757 0.9675/0.9213 0.9774/0.9622

BYTEWEIGHT 0.9841/0.9794 0.9914/0.9847 0.9378/0.9537 0.9788/0.9798

Table 3: Precision/Recall for different function start identification tools.

For Windows binaries, IDA achieves better results than
BYTEWEIGHT with x86-64 binaries, but is slightly worse
for x86 binaries.

5.5 Performance

Training. We compare BYTEWEIGHT against Rosen-
blum et al.’s work in terms of time required for training.
Since we do not have access to either their training code
or their training data, we instead compare the results
based on the performance reported in paper. There are
two main steps in Rosenblum et al.’s work. First, they
conduct feature selection to determine the most informa-
tive idioms – patterns that either immediately precede
a function start, or immediately follow a function start.
Second, they train parameters of these idioms using a
logistic regression model. While they did not provide the
time for parameter learning, they did describe that feature
selection required 150 compute days for 1,171 binaries.
Our tool, however, spent only 586.44 compute hours to
train on 2,064 binaries, including overhead required to
setup cross-validation.

Testing. We list the performance of BYTEWEIGHT,
IDA, BAP, and Dyninst for testing. As described in sec-
tion 4, BYTEWEIGHT has three steps in testing: function
start identification by pattern matching, function boundary
identification by CFG and VSA, and recursive function
call resolution (RFCR). We report our time performance
separately, as shown in Table 5.

IDA is clearly the fastest tool for PE files. For ELF
binaries, it takes a similar amount of time to use IDA and
BYTEWEIGHT to identify function starts, however our
measured times for IDA also include the time required

to run other automatic analyses. BAP and Dyninst have
better performance on ELF x86 binaries, mainly because
they match fewer patterns than BYTEWEIGHT and do
not normalize instructions. This table also shows that
function boundary identification and recursive function
call resolution are expensive to compute. This is mainly
because we use VSA to resolve indirect calls during CFG
recovery, which costs more than typical CFG recovery by
recursive disassembly. Thus while BYTEWEIGHT with
RFCR enabled has improved recall, it is also considerably
slower.

6 Discussion
Recall that our tool considers a sequence of bytes or in-
structions to be a function start if the weight of the cor-
responding terminal node in the learned prefix tree is
greater than 0.5. The choice to use 0.5 as the threshold
was largely dictated by Rosenblum et al., who also used
0.5 as a threshold in their implementation. While this
appears to be a good choice for achieving high precision
and recall in our system, it is not necessarily the optimal
value. In the future, we plan to experiment with differ-
ent thresholds to better understand how this affects the
accuracy of BYTEWEIGHT.

While there are similarities betwen Rosenblum et al.’s
approach and ours, there are also several key differences
that are worth highlighting:

• Rosenblum et al. considered sequences of bytes or
instructions immediately preceding functions, called
prefix idioms, as well the entry idioms that start a
function. Our present model does not include prefix
idioms. Rosenblumet al.’s experiments show prefix



ELF x86 ELF x86-64 PE x86 PE x86-64

Naive 0.4127/0.3013 0.2472/0.2429 0.5880/0.4701 0.0000/0.0000

Dyninst 0.8737/0.5071 − − −

BAP 0.6038/0.6300 − 0.1003/0.0219 −

IDA 0.7063/0.5653 0.7284/0.5346 0.9393/0.8710 0.9811/0.9324

BYTEWEIGHT (no-RFCR) 0.9285/0.9058 0.9317/0.9159 0.9503/0.9048 0.9287/0.9135

BYTEWEIGHT 0.9278/0.9229 0.9322/0.9252 0.9230/0.9391 0.9304/0.9313

Table 4: Precision/Recall for different function boundary identification tools.

ELF x86 ELF x86-64 PE x86 PE x86-64

Dyninst 2566.90 − − −

BAP 1928.40 − 3849.27 −

IDA* 5157.85 5705.13 318.27 371.59

BYTEWEIGHT-Function Start 3296.98 5718.84 10269.19 11904.06

BYTEWEIGHT-Function Boundary 367018.53 412223.55 54482.30 87661.01

BYTEWEIGHT-RFCR 457997.09 593169.73 84602.56 97627.44

* For IDA, performance represents the total time needed to complete disassembly and auto-analysis.

Table 5: Performance for different function identification tools (in seconds).

idioms increase accuracy in their model. In the fu-
ture, we plan to investigate whether adding prefix
matching to our model can increase its accuracy as
well.

• Rosenblum et al.’s idioms are limited to at most
4 instructions [27, p. 800] due to scalability issues
with forward feature selection. With our prefix tree
model, we can comfortably handle longer instruction
sequences. At present, we settle on a length of 10.
In the future, we plan to optimize the length to strike
a balance between training speed and recognition
accuracy.

• Rosenblum et al.’s CRF model considers both posi-
tive and negative features. For example, their algo-
rithm is designed to avoid identifying two function
starts where the second function begins within the
first instruction of the first function (the so-called
“overlapping disassembly”). Although we consider
both positive and negative features as well, in con-
strast the above outcome is feasible with our algo-
rithm.

While our technique is not compiler-specific, it is based
on supervised learning. As such, obtaining representative
training data is key to achieving good results with BYTE-
WEIGHT. Since compilers and optimizations do change
over time, BYTEWEIGHT may need to be retrained in
order to accurately identify functions in this new environ-
ment. Of course, the need for retraining is a common re-
quirement for every system based on supervised learning.
This is applicable to both BYTEWEIGHT and Rosenblum

et al.’s work, and underscores the importance of having a
computationally efficient training phase.

Despite our tool’s success, there is still room for im-
provement. As shown in Section 5, over 80% of BYTE-
WEIGHT failures are due to the misclassification of the
end instruction for a function, among which more than
half are functions that do not return and functions that
call such no-return functions. To mitigate this, we could
backward propagate information about functions that do
not return to the functions that call them. For example, if
function f always calls function g, and g is identified as
a no-return function, then f should also be considered a
no-return function. We could also use other abstract do-
mains along with the strided intervals of VSA to increase
the precision of our indirect jump analysis [2], which can
in turn help us identify more functions more accurately.

One other scenario where BYTEWEIGHT currently
struggles is with Windows binaries compiled with hot
patching enabled. With such binaries, functions will start
with an extra mov %edi,%edi instruction, which is ef-
fectively a 2-byte nop. A training set that includes bina-
ries with hot patching can reduce the accuracy of BYTE-
WEIGHT. Because the extra instruction mov %edi,%edi
is treated as the function start in binaries with hot patch-
ing, any subsequent instructions are treated as false
matches. Thus, any sequence of instructions that would
normally constitute a function start but now follows a
mov %edi,%edi is considered to be a false match. Con-
sider a hypothetical dataset where all functions start with
push %ebp; mov %esp,%ebp, but half of the binaries



are compiled with hot patching and thus start functions
with an extra mov %edi,%edi. Half of the time, the se-
quence push %ebp; mov %esp,%ebp will be treated as
a function start, but in the other half it will not be treated
as such, thus leaving the sequence with a weight of 0.5
in our prefix tree. In order to deal with this compiler
peculiarity, we would need give special consideration to
mov %edi,%edi, treating both this instruction and the
instruction following it as a function start for the sake of
training.

Although training BYTEWEIGHT for function start
identification is relatively fast, training for function bound-
ary identification is still quite slow. Profiling reveals that
most of the time is spent building CFGs, and in particular
resolving indirect jumps using VSA. In future work, we
plan to explore alternative approaches that avoid VSA
altogether.

Finally, obfuscated or malicious binaries which inten-
tionally obscure function start information are out of
scope of this paper.

7 Related Work
In addition to the already discussed Rosenblum et al. [27],
there are a variety of existing binary analysis platforms
tackle the binary identification problem. BitBlaze [6]
assumes debug information. If no debug information is
present, it treats the entire section as one function. Bit-
Blaze also provides an interface for incorporating Hex
Rays function identification information.

Dyninst [19] also offers tools, such as unstrip [31],
to identify functions in binaries without debug informa-
tion. Within the Dyninst framework, potential functions
in the .text section are identified using the hex pattern
0x55 representing push %ebp. First, Dyninst will start at
the entry address and traverse inter- and intra-procedural
control flow. The algorithm will scan the gaps between
functions and check if push %ebp is present. This does
not preform well across different optimizations and oper-
ating systems.

IDA using proprietary heuristics and FLIRT [16] tech-
nique attempts to help security researchers recover pro-
cedural abstractions. However, updating the signature
database requires an amount of manual effort that does
not scale. In addition, because FLIRT uses a pattern
matching algorithm to search for signatures, small varia-
tions in libraries such as different compiler optimizations
or the use of different compiler versions, prevent FLIRT
from recognizing important functions in a disassembled
program. The Binary Analysis Platform (BAP) also at-
tempts to provide a reliable identification of functions
using custom-written signatures [8].

Kruegel et al. perform exhaustive disassembly, then
use unigram and bigram instruction models, along with
patterns, to identify functions [23]. Jakstab uses two pre-

defined patterns to identify functions for x86 code [22,
§6.2].

8 Conclusion
In this paper, we introduce BYTEWEIGHT, a system for
automatically learning to identify functions in stripped
binaries. In our evaluation, we show on a test suite of
2,200 binaries that BYTEWEIGHT outperforms previous
work across two operating systems, two compilers, and
four different optimizations. In particular, BYTEWEIGHT
misses only 44,621 functions in comparison with the
266,672 functions missed by the industry-leading tool
IDA. Furthermore, while IDA misidentifies 459,247 func-
tions, BYTEWEIGHT misidentifies only 43,992 functions.
To seed future improvements to the function identification
problem, we are making our tools and dataset available in
support of open science.
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