
GuardRails: A (Nearly) Painless Solution to Insecure Web Applications

Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Zaveri

University of Virginia

Annotated Ruby
on Rails Code

GuardRails
Secure Ruby on

Rails Code

GuardRails is a source-to-source tool that uses annotations to produce

secure Ruby on Rails applications with minimal input from the developer.

Access Control

Automatically produce permissions checks where data is accessed/changed

conditions = ["#{Project.table_name}.id
 IN (#{ids.join(',')})
 AND #{Project.visible_by}"]
Issue.send(... :find => { :conditions => conditions})

Without the Project.visible_by condition, unauthorized users were able to see the issues of private projects.

With GuardRails, a developer can specify both the conditions for data access and editing directly
from the data model. The system then inserts proper permissions checks rather than requiring
the developer to do so.

Protected data access can be implemented by overriding the find method to check for certain
authorization conditions specified in the annotations. Protected data updates can be
implemented by statically searching for where protected data can be modified and inserting
explicit permissions checks.

As web application security becomes more important and the number of security threats

grows, developers must write large amounts of situation specific security code. This makes

code difficult to read and bugs easy to insert. We propose GuardRails, a lightweight extension

to the Ruby on Rails web application framework that makes it easy to develop secure web

applications without security expertise.

Purpose:

Using GuardRails:

To use GuardRails, a developer writes typical Ruby on Rails code and adds security

annotations. These annotations describe data invariants that can be checked dynamically by

the application. Data invariants range from permissions to forced sanitization and data origin.

Annotations use a syntax unique to GuardRails that, when run through the Ruby interpreter,

gets ignored as comments so adding GuardRails annotations cannot break existing code.

verify :method => :post, :only => [:transfer],
:redirect_to => {:action => :list}

xss_terminate :except => [:author_name], :sanitize => [:title],
:html5lib_sanitize => [:body]

@(sanitize:title, html5lib_sanitize:body)
Class Foo

@(send_only_post)
Class Bar

Sanitization

Automatically use sanitization routines on potentially harmful input

tags = %w(a acronym b strong i em li ul ol h1 h2 h3 h4 h5 h6
 blockquote br cite sub sup ins p)
user_input = sanitize(user_input, :tags => tags,
 :attributes => %w(href title))
send(user_input)

Without the sanitization call, the application is vulnerable to Cross-Site Scripting attacks.

Because HTML sanitization is so ubiquitous, GuardRails enforces it automatically rather than
requiring annotations. This further reduces the opportunity to introduce security flaws.

GuardRails takes advantage of security typing to automatically apply appropriate sanitization
routines. Strings that are rendered by a browser must be either secure or unsecure sanitized.
Strings that do not satisfy these conditions are sanitized before being sent to the client.

Security Typing
Data is wrapped with security information that protects its integrity throughout the application

Pieces of data are assigned security types:

String

Secure
Strings provided by the developer

within the application that are
guaranteed to be secure

Unsecure
Strings that have been given generated
by the user or another outside source

that may potentially be harmful

Sanitized
Strings that have undergone the proper
sanitization methods to ensure they are

not malicious

Unsanitized
Potentially harmful strings that

have yet to be sanitized

To preserve security types in the application,
type system rules control how data interacts :

Secure Secure Secure

Secure Sanitized Sanitized

Concatenating two strings always yields a secure string

It is considered safe to concatenate a secure and sanitized string

Sanitized

Unsanitized

Sanitized

Unsantized strings must undergo the proper sanitization routine
before being concatenated

Example: Safe handling of strings is central to the security of an application
 to prevent against injection and cross-site scripting (XSS) attacks

Sanitized

GuardRails

Data Policies

Data policies allow for rules and regulations to be attached to specific types of data. Data types that posses such policies will ensure that
the rules and regulations have been met when accessed(edit, modification etc....). In addition, the use of data policies will ensure that
developers no longer have to write convoluted access logic statements. Take for instance the example shown below

@(edit:modify_once)
 p1 = Project.new

#success
p1.title = "Hello World"
p1.save

#fails
p1.title = "Real Title"
p1.save

Total number of modifications surpassed!

Rules for viewing or modifying data are linked directly to the data itself

@(edit:price:admin)
Boombox = Product.new

#success
Boombox.address = "123 CandyLand Lane"
Boombox.save

"Success: Address Changed:

#fail (non-administrator)
Boombox.price = "$1"
Boombox.save

Cannot change price!

